Some Revision in Antechinus (Marsupialia) - 1

By N. A. Wakepreld ${ }^{*}$ und R. M. Warneke:

SUMMARY

The taxonminy of Authutinas sesainsomit and A. minimus is reviewed. The distribution of each species is mapped, Plastic and cranial characters of major populations are examined and campared statistically.

It is demonstrated that Victorisn populations of A. swainsonii belong to the subspecies A, s. mimiotes, and not to the nominate subspecies, A. s. swainsonii, of Tasmania.

A mainland Austratian popolation of Antechinus minimsse is revealed. It is distinguished from the nominata Tosmanian subspecies, A. it. minimas, and is given the name A. m. maritainhus thased on Phascogale sublainsont maritima Finlayson).
A. owainsonit favours wot forests, while A. minimus fayoura areas devoid of trees. It is concluded that tite former rests in logs and that the latter nests in tussocks. Both axe terrestrial, in contrant with the scansorial A. flovepss; and many features of A, swainsonii indicate its convergence with Perameles.

While A, motrimus has a generally shoeter tall and a shortex rostrum than A. awainsonii, the short anterior palatine foramina of the former digtinguish it absolutely from the latter.

Sexual dimorphism is demonstrated in each species, males being lacger than femates.

In each species, the nipple number is G in the Tusmanian subspecies and 8 in the Australian subspecies,

Taxonomy is revised as follows:
ANTEGFINLS SWAINSONLI
Antechinus swainsonii swànconii ('huseogale swainsanat Waterhouse, 1840; Tasmania.) Tasmania.
Antechinus swainsunil mimetes (Antochinus srectorsonif wistates Thoman, 1984; Guy Fawkes. District, New South Wales.) New South Wales, Victoris.

Antechnua minimus
Antechitus minimits minimus
(Dagyurus minimuz Geottroy, 1803; Islund in Fass Strait.)
Tasmania, Bass Strait islands.
Antechinus minimus maritimus
(Phascogate swainsoni maritima Finlayson. 1958; Port McDonnell, South Australis.)
South-6astern South Australis, south-western Victoria.

I. Introduction

This study of several members of the genus Antechinus was initiated by attempts to identify the species which occur in Victoria.

As with most genera, the classification of Antechinus has come about by the piecemeal description of specles and subspecies each based on either a single specimen or a very small series. All attempts at comprehensive description of the group have been made by ovexscas workers (for example, Tate, 1947) hampered by a paucity of study specimens, This has produced a disordered array of "species" and "subspecies".

An understanding of the Victorian members of the genus has necessitated investigation of most species which inhabit the gengraphical region of Australia defined by Wood and Williams (1960) as the eastern highlands.

[^0]and of related forms in morth Australia and the far southwest. A reasonably clear picture has emerged of the populations of these species in temperate Australia, but the situation in the tropics is less clear.

This paper is on the A. swainsonii group of species, and it is proposed to deal with the A. flavipes group in a further paper.

II. Materials and Methods

 (a) SourcesThe sources of specimens and data are as follows:

American Museum of Natural History.
Australian Museum, Sydney.
British Museum (Natural History).
Fisherjes and Wildife Department, Melbourne.
Muséam National d'Histoire Naturelle, Paris.
National Museum of Victoria.
Queensland Museum Bris- $^{\text {B }}$ bane.
Queen Victoria Museum, Launceston.
South Australian Museum, Adelaide.
Tasmanian Museum, Hobart.
Antechinus swainsonii and A. minimus are poorly represented in most collections, even in the museums of those states in which one or both species secur. Other than a series of approximately 120 of the former in the Fisheries and Wildife Department collection, there is a total of about 60 specimens of each in the institutions listed. Photographs of the skull of the type of A. mintimus were provided by the Paris Museum.
(b) Characters examined

Morphological features usually: regarded as being of taxonomic importance were investigated: size of body and appendages, features of the skulI, dentition, pelage and characters of the feet The plantar aspect of the manus and pes were examined for the number, relative size and position of the striated pads. The form and length of the claws were noted.

The data on all specimens in which the milk teeth (deciduous fourth premolars) persisted or the subsequent permanent fourth premolars were not fully erupted are excluded from the tables of measurements. These specimens are objectively re. cognizable as juvenile or subadult.

Externat changes indicative of breeding activities in both males and females were noted. Breeding condition is considered to be an important variable as it eharacterizes a class of adult and also defines a specific period in the life span of an individual.
(c) Techniques of measurement

Body measurements
The measurements are those which have been taken in the flesh. All the specimens in the Fisheries and Wildlife Department collection were measured, using a measuring board, vernier calipers and a steel tape, as follows:

Total length: With the animal lying on ats back and straightened out the distance from the tip of the nose to the tip of the tail, excluding any terminal hairs.

Tail length: Length from the center of the cloaca to the tail Lip.

Head-brdy length: The difference between the above measurments.

Pes length: Length from the heel to the tio of the lonsest toe, excluding the claw.

Far length: The distance from the tragoid notch to the tip of the ear, excluding hair.

Shrull and dentition

In addition to measurements, notes were made on dental and osteological features which appeared to be of diagnostie significatice. Of sixteen measurements taken, the seven noted below are examined in some detail in this paper. These were selected as being definitive of species in the eastern Australian group of Anteckinus with which we are concerned. At the same time these data provide a mean: of assessing the taxonomic status of related forms.

The following measurements were taken:

Basalan length Zygomatic breadth
Postordital constriction
Palatalar length
Antcrior palatine foramen (maximum)
Alveolar length of the molar row M^{1-7}.
Breadth at M^{3} - the distance between the outer edges of the alveoli of the right M^{3} and the left M^{3}.
Apart from the lask these measurements are as defined by Coekrum (1955) and as illustrated in Figure 1. All measure-
ments were taken with either a HELLOS dial-reading or vernier calipers, calibrated to 0.05 mm, , and with the aid of a birocular microscope at 6 to 10 magnificatlons.

TII. Taxonomy of A. SWANSONIE

The species was described by Waterhouse (1840) as Phascogale swainsonii. The type, a Tasmanian specimen originally in the private collection of W . Swainson, was later acquired by the British Museum (Skin, No. 60. 1. 5. 18; skull, Nos 60. 1. 5. 26 and (348.a).

Thomas (1921) established a subspecies, A. 8. mimetes, hased on a specimen from the Gay Fawkes district of north-eastern New South Wales (BM, No, 24. 10, 1. I; collected by G. H. Wilkins, April 14, 1924).

Iredale and Troughtou (1934) recognized these two forms, and gave Tasmania and Victoria as the distribution of the nominate subspecies, and northern New South Wales for Thomas's subspecies. However, distribution data now avallable demonstrate that there is no major geographical break in the range of A. suainsoniai on the Australian mainland, and no general morphological division is apparent between the Victorian population and that of northern New South Wales. On the other hand, the mainland group as a whole shows slight morphological variation from that of Tasmania. Therefore the trinomial, A, swainsoriu swainsonsi, should be applied only to the Tasmanian population, while A. swainsonaii mimetes applies to the whole

Victorian and New South Wales population.

Finlayson (1958) discussed a "dyab and dull brown" form from south-western Victoria, which he designated as the "Heathmere variant" of his Phascogale swainsoni maritima ($=$ A. minimus, see section VIII). Although he did not record measurements of the variant, his photographs of the ventral aspect of a skull and of the upper toath row (plate 1, loc. cit.) identily it as A. swainsonii. The length of the anterior palatine foramina, extending back to the level of the middle of P^{3} and the spacing of the premolars are definitive. Furthermore, an aduit skull, Fisheries and Wildlife Department No. D324, a male, taken at Mount Clay near Heathmere, is not distinguishable from A. swainsonii mimetes. The pelage of this specimen (see section $V(c))$ agrees with Finlayson's description of the "Heathmere variant".

Higgins and Petterd (1883,
1884) described several novelties in Antechinus (niger, mororei, moorei var assimilis. rolandensis and concinnus) All were from Tasmania, but apparently the type specimens have been lost. Thomas (1888) and subsequent authors place the first three in the synonymy of A. swainsonit and the last two as synonyms of A. mineinus.

IV. Distribution and Habitat of A. SWAINSQNII

According to the data available, the densest populations or Antechinus swainsonit occur in the Otway Ranges and eastcentral mountain districts of Victoria and in north-western Tasmania, in which areas the annual rainfall is about 40 inches or more per annum. These are regions of wet sclerophyll forest dominated by White Mountain Ash (Eucalyptus regnans), and often with stands of Myrtle Beech (Nothofagus cunninghamii) and gullies of Soft Treefern (Dicksonia antarctioa). In this habitat A. swainsonii
fossicks, bandicoot fashion. amongst the ground litter and in the friable surface soll, for the arthropods and other small animals which comprise its food.

The habitat at Loch Valley, north-western Gippsland, is in a Forests Commission plantation of Pinus radiata, with large Mountain Ash logs about the ground and an abutdance of bracken and other low scrub The average asnual rainfall is about 56 inches.

Examples caught in tho Grampians, western Vietoria (R.M.W., 3.11.1962) were amougst ferns in a vet gully under eucalypt forest. A rabbit trap victim was sent from W Tree, eastern Victoria, by L. Hodge, who described the habitat (in. litt., $26.8,1968$) as it small valley with mixed encalypt forest, "silver-grass" tussocks and scattered bracken. At Moles. worth, south-eastern Tasmania, is specimen was caught (N.A.W., 21. I. 1962) amongst treeferns and shrubbery along a creek through an acea of light forest. These habitais are probably typical of the scattered occurences of A. swainsonai in western and eastern Victoria, eastern Tasmania and eastern New South Wales. They indicate that the species oceurs in small areas of suitable habitat, lathei: than ies having a general distribution throughout regions of drier forests.

No information is avatlable about actual homes of these phascogales in the forest habitats, but we believe they make nests elose to ground level, in hollow logs and the butts of
partly dead trees. (The nests described by Fleay (1932) as belonging to A. siodinsontiz are those of A. stzartio; the latter species having been confused with others prior to the present study).

A few specimens of A. swaiksonii have been trapped in habitats quite different from those already described. Near PortJand, zouth-western Victoria, one was caught (R.M.IW., 9.1 1962) is flat, sandy tercain in open woodland, on tutnellike tunways through a dense tangle of wiry grass. At Port Campbell, weat of the Otway Ranges, another was taken (N.A.W., $17=12.1962$) amongst large tussocks of Coast Sawsedge (Gahmia trifida) between a coastal swamp and an area of stunted banksia and eucalypt scrub. From Lakes Entrance, eastern Victoria, specimens have been received, which were caught on the narrow strip of scrub-covered sand dunes between Lake King and the ocean, As the last two habitats are devoid of $\log s$ which could be used as homes by the phascogales, it must be assumed that in these areas they make nests in tussocks of saw-sedge and in thickets of grass.

Besides the type, there are five Tasmanian specimens in the British Maseum: theee from Magnet (near Waratah), one from Henty River sand one from Table Cape. The species has never been authentically recorded from any island, either in Bass Stralt or elsewhere off Tasmania.

Distribution of A. swansonai is shown in Figuce 2.

Fighte 2: Distribution of Antechimus susaingonti.

V. Plastic Chakacters of A. SWATNsonil

Troughton (1941) describer A, swaitsomit as one of the more sturdily built species of the genus and drew attention to its particularly slender snout. Compared with other small forest dwelling dasyurids, it is thickset and heavy in the hind quarters. The tail is conspicuously shorter than the hody. The largest Victorian specimen in the F.W.D. collection, a male, weighed 128 gm , the largest female weighed 65 gm . The ears are relatively small and are partly hidden by the body fur. The fore claws are long and broad (see Figure 8) and, according to our observations, are used for digging in a manner similar to that of bandiconts. The foot pada are smaller, less prominent and usually one less in number than in other forestdwelling species of Antechinus. Most of these featores of A. squainsonit are in contrast with those of the scarsorial A. flavipes group and appear to be adaptations to a terrestrial existence.

(s) Body Measurements

The data of body measurements are derived from a series of 57 males and 70 females. Specimens from the geographical extremities of the species range are cepresented, but the bulk of the series is from Loch Valley in eastern Victoria ($38^{\circ} 00^{\prime}$ S. $145^{\circ} 38^{\circ}$ E.) Headbody, tail, ear and pes lengths are set out in Table 1. Though the averages indicate that males are larger than females, the body proportions of the sexes
are virtually identical. Headbody length and pes length are selected for statistical evaluation of sexual dimorphism within each of the major geographically isolated populations (figure 2). Tables 2 and 3 set out the relevant data from the mainland and Tasmanian series. Data from the Loch Valley serjes are included in the table to show the observed varjation in a reasonably large sample from a small area of relatively uniform habitat.

As the frequency distributions of these variables are approximately "normal", the " t " test of significance, as outlined in Karmel (1959), is used for the comparisons. Males from both the Tasmanian and mainland populations have a significantly greater head-body length than females ($\mathrm{P}<0.001$ in both cases). The values of P were obtained from Fisher and Yates (1957). The same data do not demonstrate any significant difference between the two populations.

Again, males of both pepulstions are found to have a significantly greater pes length (P <0.001 in both cases) than the female, A significant difference in pes length between the two series of males could not be demonstrated ($\mathrm{P}=0.3$). However, mainland females do significant difference between have a significantly longer pes than Tasmanian females ($\mathrm{P}<0.001$). When pes length is expressed as a percentage of head-body length it shows no the two populations, in either sex.

Table 1
Comparison of body measurements of males and females of A. swainsonii.

	Males (57)				Females (70)			
Head-body length	97	145	(123.1)			140	(116.0)	
Tail length	76 -	124	(98.4)	80 \%/	73	104	(88.5)	77\%
Ear length	12.5-	19	(16.4)	13%	12.5-	18.5	(15.3)	13%
Pes length	18	23.5	(21.5)	17\%	17	22	(20.0)	17\%

Table 2
Comparison of head-body length of Tasmanian and Australian mainland populations of A. swainsonii. Measurements in millimetres.

		Range	Mean \pm S.E.	Standard Deviation
Tasmania	$\begin{array}{r} 980 \\ 1398 \end{array}$	$\begin{array}{r} 102-134 \\ 99-127 \end{array}$	$\begin{aligned} & 117.4 \pm 1.06 \\ & 112.2 \pm 0.77 \end{aligned}$	$\begin{aligned} & 3.19 \\ & 2.78 \end{aligned}$
Australian mainland	$\begin{aligned} & 46 \sigma^{\circ} \sigma^{2} \\ & 57 \end{aligned}$	$\begin{array}{r} 97-145 \\ 101-140 \end{array}$	$\begin{aligned} & 124.2 \pm 1.58 \\ & 116.8 \pm 1.18 \end{aligned}$	$\begin{array}{r} 10.71 \\ 8.88 \end{array}$
Loch Valley	$\begin{aligned} & 210 \sigma^{\circ} \\ & 37 \end{aligned}$	$\begin{aligned} & 109-145 \\ & 101-133 \end{aligned}$	$\begin{aligned} & 127.9 \pm 2.02 \\ & 114.1 \pm 1.09 \end{aligned}$	$\begin{aligned} & 9.25 \\ & 6.62 \end{aligned}$

Table 3
Comparison of pes length of Tasmanian and Australian mainland populations of A. swainsonii.
Measurements in millimetres.

	Range	Mean \pm S.E.	Standard Deviation	
Tasmania	$10 \delta^{\circ} \delta^{\circ}$	$20-22$	21.2 ± 0.29	0.92
	$13 \$ \%$	$17-21$	19.0 ± 0.27	0.97
Australian	$47 \delta^{\circ} \delta^{\circ}$	$18-23.5$	21.6 ± 0.17	1.15
mainland	479%	$18-22$	20.2 ± 0.15	1.03
Loch Valley	$200^{\circ} \delta^{\circ}$	$20-23.5$	21.8 ± 0.21	0.95
	37%	$18-22$	20.0 ± 0.14	0.86

(b) Manus and pes

Finlayson (1958, p. 147) gives a good account of the features of the manus and pes of A. swainsonii. The appearance of the plantar surface as in Figure 3 is typical of the species.

In Antechinus the maximum number of foot pads is normally six*, four interdigitals at the

[^1]base of the digits and two additional pads, often variable in form, lower down on the palm or sole. In the past, a confusing variety of terms has been used in describing these pads in the Dasyuridae. They were referred to by Jones (1923, p. 8) as thenar - on the inner side of the foot below the first interdigital, and hypothenar - on the opposite side. Finlayson
(loc. cit.) used inner metacarpal (-tarsal) instead of thenar and outer metacarpal (-tarsal) for hypothenar. In some species of Antechinus the inner metatarsal is fused with the first interdigital, resulting in a single long pad extending from the base of the hallux. Thomas (1888, p. 285) termed this the hallucal. whereas Finlayson (loc. cit., p. 147) restricted that term to
the first interdigital alone. Finlayson's terminology is used throughout this paper.

The normal appearance of the plantar aspect of the palm is shown in Figure 3. The inner metacarpal and first interdigital are completely fused. In a series of 75 A. swainsonii, drawn largely from Victoria and Tasmania, this condition was noted in 97 ', of cases. Figure 3 shows

Figure 3: Foot characters of Antechinus suainsonii. Left-Left pes. Lower rightLeft manus. Upper right-Foreclaws.
the plantar aspect of the pes, with the hallucal and inner metatarsal pads distinctly separate. Finlayson (loe cit., p. 147) noted fusion of these two pads in 4 out of 16 specimens and commented that "the fusion of the original elements is always made obvious ly a constriction at the site". In 78 specimens of the above series examined for this feature, complete fusion was noted in $32(44 \%)$, and in maty of these no constriction was evident. In 10 specimens (14%) the pads were fused on one pes only and the remaining 31 (42\%) showed complete separa. tion on exch pes.

> (c) Pelage

The main pile is dense, moderately soft and about 10 mm in length mid-dorsally, the tips providing the general dorsal colunr of deep brown. Bronze flecks are apparent under sujtable lighting, due to a narrow band of that colour below the tip of each hair; the basal zone is deep slate. There is little unteroposterior differentiation, but the rump and flanks usually have a warmer tone than the head and shoulders. The guaed hairs are about 15 mm long and are glistening black for the distal third of their length, imparting a sheen to the coat. The ventral for is uniform greyish white at the tips and slate beneath. Orbital crescents are either absent or ill defined. The ears, manus and pes are of the same colour as the head and shoulders. The tail is short-haired, slightly darker above; the darsal fur near the base is similar to that of the rump.

Several colour variations have been noted. The coastal specimens from Lakes Entrance and Port Campbell are drab, with the rump, fanks and upper base of tail a warmer brawn. The wrestern Victorian population (Grampians and Portland area) are greyish brown lightly Alecked with dull 「awn, giving a grizzled appearance.

A single instance of melanism was noted in a male from Erica, Vietoria (N.M.V., No, C. 1395 .

VI. Skull and Deintition of A. swalnsonil

According to Tate (1947, p. 182) A, swainsonis and A mimimus form a strongly specialized division of the genus. They axe very similar in most featares but the greater degree of modification has occurred in A. swainsonit.

In describing the skull and dentition of A. swainson $\ddot{i},-A$. faripes has been selected as a standard for comparison because it is regarded as one of the least specialized members of the genus (Jones 1923, p. 98). The skull of A. swainsonit is shown in Figure 4; and Features of it are compared with those of A. Hlavipes in Table 4.

The molars of A surainsonii are smaller than those of A. flovipes but are otherwise very similar.

In A. swainsoniz, the milk premolar (dP^{4}) is much reduced in size. It is a low-crowned tooth with three roots and is molariform. By comparison dP_{A} is appreciably smaller. It has two roots and, except for its low brown, resembles the permanent. premolars.

Table 4
Comparison of cranial characters of A. swainsonit with those of A. fiapipes

A. swainsoniz

Long, narrow rostrum.
Anterior palatine foramina not less than 4.60 mm .
Postorbital constriction broad in proportion to the zygomatic breadth, sides approximately paralle].
Frontal-nasal area
eoncave to struight in lateral aspect.
Mandible long; anterior portion narrow.
I 1 of medium size, in contact
with $\mathbf{1}^{2}$, only slightly procumbent.
It slightly compressed Jaterally, with a well defined innex cutting edge in line with [2-4, in close ocelusion with ${ }^{1}$.
I^{2-4} compressed laterally, slightly elongated anteroposteriorly, not crowded.
Slight descending size gredient from 1^{2} to I^{4}, adjacent incisors may be subequal.
Anterior lower incisors. markedly procumbent. 1^{3} bears small accessory cusp on buccal aspect near heel,
sfightly overlapping the canine.
Uppur canine compressed laterally, usually with a pronounced curve.
Upper premolars compressed latetally, elongated anteroposterionly; spsee on each side of P1.
Lower premolats compressed laterslly.

The lower decidnous teeth are lost first, generally by early December, when the animal is about 4 months old, but dP, has been found as late as February, persisting at the rear of the erupting P_{5}.

A. flavipes

Short, broad rostrum.
Anterior palatine foramina not more than 3.70 mm ,
Postorbital constriction narrow in proportion to aygomatic breadth, sides not parallel.
Frontal-nasal area convex in lateral aspect.

Mandible short; anterior portion broad.
11 large, widely separated from I^{2}, markedly procumbent.
II not compressed, without cutting edge, hot in close ocelusion with 11 .

12-4 not compressed, rounded in form, crowded.
Well marked descending
size gradient from
I2 to I^{4}.
Anterior lower incisors less procumbent.
Aecessory cusp
scarcely differentiated or absent.

Upper canine a broad tapered peg, slightly curved.
Upper premolars broad, not elongated anteroposteriorly; P1 not separated from adjacent teeth.
Lower premolars not compressed laterally.

Table 5 provides comparative measurements of the skull and teeth of the Tasmanian and mainland series, and of a series from Loch Valley, Victoria. Again, the latter set is given because it represents a large
sample from a small area of relatively miform habital.

In corresponding measurements, the Tasmanian and mainLand series are very similar, and their skull proportions are almost identical. The test of significance, as used previbusly, shows that tne only statistically valid difference between the two series is in length of the anterior palatine foramen ($\mathrm{P}<0.001$). However, in scanning individual measncements of the palatine opening in mainland skulls, some variation is noted in this feature from place to place A comparison of local populations was restricted to those represented by skull series. Four specimens from the Guy F'awkes district* of New South Wales $\left\langle 80^{\circ} 25^{\prime} \mathrm{S}\right.$. $152^{\circ} 20^{\prime} \mathrm{E}$), at the northern limit of the distribution, averaged $5.010=0.16 \mathrm{~mm}$. In Vichoria. the Loch Valley series averaged $\overline{\mathrm{a}} .31 \pm 0.02 \mathrm{~mm}$; eight specimens from the Dandenong Ranges ($37^{\circ} 51^{\prime} \mathrm{S}, 145^{\circ} 22^{\prime} \mathrm{E}$) $578 \pm$ 0.09 mm ; and twelve specimens from Mount Macedon ($87^{\circ} 24^{\prime} \mathrm{S}$, $\left.144^{\circ} 34 \mathrm{E}\right) 515 \pm 0.06 \mathrm{~mm}$. Only the Dandenongs series ditfers markedly from the average of the whole mainland series. The interpretation of these results is severely restricted by the small size of three of the samples and the paucity of comparative material from the western limits of the distribution. In any case it is not known to what extent these samples represent geographically isolated populations. A possible relationship between the Dandenongs and Tasmanian populations is not horne out by

[^2]test $(\mathrm{P}<0.01$ for the difference). These findings are the basis of the adjustment suygested in section 11I, to the major subspecific division which has been recognized in the species, e.g. by Iredale and Troughton (1934) and Finlayson (1958).

It certainly appears that A, swainsonii and similar species are more specialized in many features, and this premise is accepted by us as a basis for the following discussion.

Most of the modifications noted in A. swainsonti occur also, in various combinations, in other small dasyurids. Elongation of the rostrum is noted in Noophascogale, Phasoolosoreas and Antechinomiss, In the last two genera the incisors are of the same pattern as in A. Ravipes. In Neaphascograle the incisors are modified as in A. swainsomat bht in the former 1^{1} bas reached a stage where it is identical in shape with $13-4$ (Tate 1937 . 1947). The accessory cusp on I_{3} in A. swalnsoneti has not been noted by other authors (for example, Tate (1948, p. 317) stated that a bifid I_{5} is universal in the Peramelidae and is not found in other related families). In Perameles granit, the additional cusp is conspicuous and functional in ocelusion, shearing past the faintly triangular crown of 1. In A. swainsonit it is inconspicuous and functions imperfectly because of the close proximity of the canine. In A, swainsoniz (and more so in Neophascogate) the arrangement of I^{-1} approximates closely to that of Peramples yumnai,

Table 5

Cranial Measurements of A．swainsonii．
（in millimetres）

	Tasmanim				Aristraliam Maindand				1．ech Valty			
	No．of Spuct． mans	Ratage	Metan \pm S．E．	Stand． Uatrica－ $150 n$	No．of Spect－ muns	Kange	Mean ：S．F．	5／umid． Jevis． （ioi）	No．of Speci． Hers	Range	Mear \pm I S E．E．	Sundi． Devik tion
Basalar Leng：h（B．L．，	13	25．85－－28＋90	27．70．20．23	0.839	7	26． $55-31 \cdot 30$	$28.24 \div 0 \cdot 13$	1－155	42	26．60－30．10		1.104
Ly；omatic Bradels （7．13．）	13	14－5u－16－34	15．64．1．0．14	0313	7	$1350-18.25$	16.19 ± 0.04	10.817	43	14．90－18．25	16．04：10．12	0.419
Postorbiti：Constric． tosn（t．C．）	14		7.6640 .05	0.180	88	$7.20-8.60$	7．89．E 0 （16）	0.651	47	：4n－ 860	7985104	0． 257
	14	14， $70-15.55$	15．71：20－12	0－4．9．9	8	84－45．－37－20	15．62」：0．06	0.611	48	17．74－16．65	13．71过 08	11．546
Anterior Patatine Fortura	14	5．70－5．65	6．12土0．66	0.248	90	$460-6.35$	$5 \cdot 33 \pm 11.45$	0.492	48	4．60－5．20）	531 ！ 10.0 .05	11.3 .45
	14	8． $60-9.20$	8.93 ± 0.05	0.162	90	$8.30-10.00$	8.90 ± 0.04	$0 \cdot 344$	50	（130－9030	878 ± 0.03	11．336
Lenith，wios	14	$5.18-5.75$	5438 ± 0.05	0.177	11	$5.00-6.20$	5.46 ± 0.02	0.218	50	$5 \cdot 00-5 \cdot 70$	$531 \pm 0 \cdot 02$	ก 12， 12
PC．it3ion as parcent，	13	25.1 －28．6	27.6 ± 0.29	0.715	78	2\％－4－39．5	27.6 ± 0.13	1． 162	42	－4．5－ 49.5		10．756
2，B．jB．L．，as perceul．	13	54．3－58．0	55．5．5 50.37	1.87π	75	52．2－60．8	$36.6=10 \cdot 20$	1．721	12	53．9－60．6	36.92 ± 0.23	1．461
P．L．／B．L $=$ as parcent．	13	54．6－58．1	50.5 ± 0.27	0.957	78	53．4－57．7	56.010 .11	0.938	42	53．4．-57.3	35．90 $\div 1.16$	1.051
B．M．jB．L．，as percent．	13	31．0－33．6	32.2 ± 0.25	0.890	77	28．4－34．6	31.6 ± 0.24	$1 \cdot 243$	42	28－1－32－6	31－06：0．14	0.917

Table 6
Cranial measurements of A．minimues． （in millimetres）

	Mandictiky Istani				Tasmaria				Austrmian Muiniand			
	No．of Sptio MAMS	Rnate	Mant S S $\mathrm{S}_{\text {－}}$	Stand． －Deatia－ tion	No，if Spritw Mans	Range	Wean \pm S．E．	Staurd． गeviac lion：	No，of 30the 1110145	Lintat	Meara＝LE S． 12.	S／aral Jemin－ liour
13asaial J．ength＇Js．L．）	14	$34.10-26-90$		11.880	1.7	23－60－20， 60	$25.92=0.48$	1.740	17	25．641－29．］4	27．05土n．al	1.295
Zyemnatic breatitit （7．13．）	12	34．80－16．20	15．64 4.76	0.429	1.4	11．80－17．70	1531150.24	n． 832	11	1．8．64－18．19	17．16t．0．24	0.770
Jostorbilal Constris－ 1401（ 1 ．C．）	14	7．00－7．50	7． 29 da． 0 \％	0．174	16	$7 \cdot 90-0.511$		0－380	11	7.6078	7137， 11067	61．243
］atatalar Lensth（3．L．e）	13.	15．60－11 65	14．3120．044	0．326	1.1	13－20－15： 0	14．20＋6．17	$1183{ }^{\text {a }}$	］${ }^{\text {d }}$	14．90－15．90		01． 173
Anterior Jalitine forsimess	14	$3-6000400$		$0 \cdot 140$	1ir	$3 \cdot 30-4.40$	375.60 .07	1） 288	11	$3 \cdot 35-4.06$	3.988 .5012 B	6． 272
Thendih at 30（JSM）	16	$890-9.25$	$9 \cdot 09: 5 \cdot 03$	0． 114	15	8 40－975	89.9 ± 010	01392	11	$9 \cdot 20-1020$	？ $65 . \pm$ 年．08	0.26 .5
	14	$5 \cdot 00-5 \cdot 30$	$5 \cdot 74 \pm 0 \cdot \mathrm{Cl}_{2}$	（1．1187	76	4．911－5．35	5．08－0．09	01．134	11	$3175-5 \cdot 5$	$5 \cdot 32 \pm 10 \cdot 03$	0.113
	15	27－0：－ 00	20．77 $510 \cdot 13$	0.486	19	27－2－－311 3^{3}	2840.07	0.978	10	$296-29.1$	$26 \cdot 6 \pm 17.71$	$2 \cdot 330$
\％．13．／13．1－， 75 percelsi．	12	5r．jf－62．5	$60.1 \pm \pm 0.48$	1．463	13	$349-81.5$		1． 1.53		$59.0-63.1$	61．2 50.48	1．371
P．E．f3，J．，es perceule，	13	53－1－58＋2	551 5 － 11.32	$1+170$	12	3．7．5－－55．9	35.6 ± 0.30	0.975	10	53．6－5．54．9	54.5 ± 0.32	1．0］ 1
13．M．／R2L．．，pericul．		33．0－36．6	14．4 $\ddagger 10 \cdot 2]$	1）． 210	1.3	35．9－35－6	$34 \cdot 5 \quad \therefore 11.24$	0.998	10	32－2－35－2	$34 \cdot 1 \pm 0 \cdot 63$	1．974

The above exidence, and otser which is discussed in Sections V and X suggests a convergence of A. swamsondie with Perameles.

VII. Breeding Condition in A. SWAINSONIt

Females

In the series trapped over a period of six years at Loch Valley, Victoxia, 35 females provided information on breeding. As in other Antechinils so far studied (Fleay, 1949; Forner and Taylot, 1959; Martow, 1961) breeding in A. swainsonib is restricted to a short period in late winter. In Loch Valley animals, birth oceurs at about mid-Alagust. Little variation in the date was observed for the years 1957, 1960 and 1961, for which data are available. The earliest dates of occupation of the pouch area in those years were August 14, 17 and 12 respectively.

In the non-breeding condition, which obtains for most of the year, the pouch area is inconspicucus and with no definition of the margins. Its position is marked by a patch of whitish hairs which, unlike the ventral fur, are of aniform colour throughout their length. The nippies are usually difficult to find as they are quite minute and are obscured by this patch of fur.

In late July, presumably during pregnancy, the pouch area enlarges and becomes defined by lateral ridges of skin, The earliest litter recerded at Loch Valley was of eight young, which averaged 6.5 mm in erown-rump length. The earliest date of capture of a lactating
female not carrying young was October 11. Pxesumably the young had been left in the nest. At this stage the pouch area is at maximum development. It is roughly triangular in shape with the apex backward. The anterior border is marked by long reddish-brown hairs. The skin of the mammary area is granuiar and almost devoid of hair, The nipples are arranged symmetrically, parallel to the lateral ridges of skin, In all mainland specimens examined, the number of nipples was eight; in the four Tasmanian specimens for which a count: was possible, the namber was six.

Males

The only external sign of sexual maturity in males is the size of the testes. During the period of sexual immaturity the scrotum is small and is partly concealed by ventral fur. In June the testes are at maximum size and the pendulous scrotum is very conspicuousapproximately one month before pouch development in the female.

VIIL. TaXONOMY OF

A. minimus

This species was originally described by Geoffroy (1803) as Dasqurus minimus, and it is the earliest published species of those currently recognized in the genus Anteckinus. The type description is in Bulletion des Sciences por Lo Sociaté Philomathique de Paria No. 81., the date of which is given by Iredale and Troughton (1934) as "1803 . . . December <fide

Sherborn)." Later, Geoffroy (1804) amplified the description in Annales du Muséum d'Histoire Naturelle.

Both descriptions of A. minimus simply compare it with large dasyures and so are not specifically diagnostic in Antechinus. However, the pelage is stated to be roux ($=$ reddish, russet).

The type is in the Muséum National d'Histoire Naturelle, Paris, and of it Dr Jean Dorst reports (in litt., 7.6.1962):

This specimen is mounted and the skull, withdrawn from the skin, is kept separately. It is in fairly good condition for its age. It was brought back by Peron and Lesueur (from the) expedition of the "Corvette le Naturaliste" and (is) kept under the number 381 .

The colouration of the specimen is brownish all over the upper parts; the under parts are lighter. The tail is blackish brown, and has only a few hairs bristle-like. The fur is worn out and is fallen in some parts. The pelage seens only a little faded by light.

Photographs of the skull and mandible of the type specimen have been obtained. These confirm the identity of the populations that are treated in this paper as Antechinus minimus. In particular the anterior palatine foramina are short (see Figure 5 and Section XI).

As regards the type locality of A. minimus, Geoffroy (1803) stated that "M. Péron l'a trouvé dans une île placée dans le detroit de Bass". This detail has apparently escaped the notice of authors dealing with the species; Iredale and Troughton (1934) simply gave "Tasmania" for the type.

Waterhouse (1846) cited

Annales du. Muséum for the original description of the species, and he indicated that Maria Island was the type locality. (In the Annales, Geoffroy had omitted the locality data). Waterhouse's error evidently arose from a statement by Péron (1807, p. 359), who. in his record of the expedition's sojourn at "l'ile Maria", wrote:
Dans la classe des mammiféres, je n'ai pu voir qu'une seule espéce de Dasyure, de la grosseur à peine d'une souris; j'ai reçus un indjididu vivant, . . ."

In 1818, Desmarest described Phalangista nana ($=$ Cercartetus namus), giving the locality as "L'ile Maria" and the size as "Deux pouces et demi environ de longeur". Waterhouse (1846, p. 309) stated that the specimen was "procured by M. Péron at Maria 1sland" and that it was of the bulk of the Common Mouse.

Evidently the type specimen of Cercartetus manus was the "dasyure" collected by Péron on Maria Island.

In Péron's Voyage de Decouverte aux Terres Australes. there is only one entry that could apply to the type specimen of Antechinus minimus. This is in volume $I_{\text {, }}$, on page 859, in a quoted report by M . Bailly, who had charge of a small party for several days. The relevant extract translates as follows:-
a species of small animal, which the crew did not fail to call rats, but which everything indicates ought to belong to a genus or even an order quite different. These animals have long silky hair; their colour is a yellowish grey; they ar? besides so little shy, that they cane
right amongst us to eat the debris of our meal. One of our sailors took one of them with his hand, without the animal appearing to be frightened.

The locality was Waterhouse Island, which lies close to Tasmania towards the eastern end of Bass Strait; and the episode occurred in the late evening of March 17, 1802.

Gray (1841) described it specimen from the Tasman Peninsula, south-eastern Tasmania, as Phascogale affinis. Thomas (1888) and subsequent authors placed this in the synonymy of A. minimus. The type of A. affinis is in the BM (No. 41. 1241 and 316.a), and cranial measurements which were sent from there to us support Thomas's action (for example, the anterior palatine foramina were given as 2.9 mm long) .

Our identification of the Tasmanian population as the nominate subspecies, A. minimus minimus, is based on the as sumption that the type of A. minimus was a specimen of this population. As that type specimen was subadult, and because there are insufficient specimens from Bass Strait islands for statistical tests, this assumption is made on circumstantial evidence only. Points taken into consideration are, firstly, the probability that Waterhouse Island is the type locality, and secondly, that the faunal relationships of the Bass Strait islands are with Tasmania rather than with the Australian mainland.

Finlayson (1958) published data of a series of Antechinus from coastal tracts of southeastern South Australia and

(lhotos: J. Cooper. F.W.D.)
Figure 4: Skull and mandible of an adult male Antechinus suainsonii mimetes from Loch Valley, Victoria (F.W.D., No. D.487).
south-western Victoria. Ho named them Phascogale swainsomi maritima, and designated as the type a specimen from Port MacDonnell (S. Aust. Mus., No. M.4985, leg. G. Tilley,

(Ihotos: J. Cooper, F.W.W.)
Figure 5: Skull and mandible of the type of Antcchinus minimus maritimus, an adult male (S.A.Mus. No. M.4985).

June 1938). Some of the measurements he gave - for example, $3 \cdot 0-5 \cdot 5 \mathrm{~mm}$. for the anterior palatal foramina - indicate that the series contained both A. swainsonii and another species. Though most of this
November, 1963

('hotos: I'aris Museum)
Figure 6: Skull and mandible of the type of Antechinps minimus minimus, a sub-adult with fourth premolars erupting.
series has not been available to us, the type has been examined and identified as A. minimus; (see Figures 5 and 6).

As the Australian A. minimu. differs in minor characters from the Tasmanian form, it is con-
venient to recognize Finlayson's subspecific name. The mainland population is therefore distinguished as A. minimus maritimus. However, Finlayson's "Heathmere variant" (which is a form of A. swainsonii) must be excluded from this taxon (see Section III).

iX. Distribution and Habitat of A. minimus

Besides the type of A. affinis, from Tasman Peninsula, the British Museum has specimens of A. minimus from Scottsdale and Hummock Island. In Australian museums, there are
specimens from several other islands of Bass Strait and from Maatsuyker Island, off southern Tasmania. Most other specimens from Tasmania, and all from the Australian mainland, were from close to the coast, indicating that the typical habitat of the species is coastal (see Figure 7). Though properly understood by Thomas (1888) and Tate (1947), A. minimus has been confused in Australian collections and literature with A. swainsonii and other small dasyurids. Fcr instance, the animal described by Guiler (1960) as A. minimus is, in

fact, Sminthopsis Lercopus. Be. cause of these misunderstandings, the comment by Troughton (1941) that "no habitat notes are available for the species", remained true until last year.

Two specimens of A. minimus were eventually caugh (N.A.W., 30.6.1962) at Bridgewater Lakes, near Portland, south-western Victoria. The habitat was near a small lagoen amongst a shrubbery of tall tea-tree (the Moonah, Meloleuca pubescens), with areas of dense ground coverage. They entered traps which were on damp ground under a thicket of large tussocks of Coast Sawsedge (Gahnia trifida) and within six feet of the water's edge. The area was sand-dune, devoid of eucalypts, and, in the complete absence of other shelter, it is certain that the phascogales there must make their nests in the Gahnia tussocks.

In captivity, these specimens were provided with bundles of wiry grass and sedge, and they were guite adept at making nests, by getting into the material and then pulling the strands round theruselves.

Simitar conclusions were reached this year by R. H. Green of the Launceston Museum, based on his experience in trapping both A. suainsonii and A, mintmus near Waratah in north-western Tasmania, in a locality where open areas of "buttori-grass" (Gymmoschoenus sphaerocephatus) give way to forests of Myrtle Beech (Nothofagits danninghamal). Green summarized his
observations (in litt., 11.9 . 1983) as follows:
A) Adecolanos taken ive battongrass were A. minimus and all takent in the myrtle forest were A. swainsonn. However, A minimus was taken ill thick ecrub bordering but-ton-grass, but none of this specie. was taken actaally in the rainforest, There was in ont area a short dense growth of fine marshy grass in which we caught A. minimus on pads. As for their nests, I eonsider they boild in the dense gxass or in the centres of the larger butzon-grass bushes. There is simply no other suitable place.

X. Plastic Gharacters of

A. Minimus

(a) Body Measurements

Table 7 sets out the data of body dimensions derived from 18 male and 17 female adult specimens from throughout the range of the species. Aithough of similar proportions to A. swainsonii, A mininurs is a smaller animal. The greateot, weights recorded for specimens of A. minimus are 55 gm for a Tasmanian male and 43 gm for a mainland female. A marked difference between the two is in length of tail, which in A. menimus measures about 70 per cent. of head-body length. compared with about 80 per cent. in A. swainsotaiz, A live specimen of A. Mintmas is shown in Figure 8.

A comparison of head-body length of the Tasmanian and Maatsuyker series is set out in Table 8. A close similarity is obvious. As corroborative evidence, cranial measurements of the two forms are practically identical (Section XI). Table 9 shows a comparison of the com. bined serjes from Tasmania and

Maatsuyker (presumably the nominate subspecies) with the mainland sample. However, because only one of the mainland specimens is female, the statis, tical comparison is restricted to males. Despite the small and variable series, the difference between the means was found to be highly significant ($P<$ $0 \cdot 001$). The pes lengths as absolute measurements are closely comparable; as proportions of head-body length they show divergence, but this is not statistically significant.

The differences between sexes could be tested only in the Tas-mania-Maatsuyker series (see Table 10), In head-body length males are larger than females, but only at the 1.0 per cent. level of significance. Though the evidence is inconclusive, due to the small size of the samples, the observed difference is in keeping with marked sexual dimorphism found by as in A, swainsouii and by Hornet and Taylor (1959) in members of the A, favipes group.
(b) Manus and pes

Figure 3 , drawn from a specimen of A. swansonti, shows the normal appearance of the manus and pes of A. minimus equally well The only quantitative difference between the leet of these species is merely the frequency of fusion of the frest interdigital and inner metacarpal (-tatsal) pads and is of no value in identification of individuals. In A. swoinsonia fusion occurs more than twice as irequently as in A. minemas. This is demonstrated in Table 11. This result is at varlance
with Finlayson's findings (loc, cit., p. 149), due possibly to his series of "Ph, s. maritima" containing some A. suainsonii.

Tate (1947) commented on the prevalence of striated pads in forest-dwelling mammals, mentioning marsupials, tree shrews (Tupaiidae) primates and eertain of the rodents. This, he infers, indicates arboreal habits, or at least, arboreal ancestry. The lack of striations in some living species of these orders is suggested by Tate to be "an adaptive condition superimposed on ancestral lines that earlier had striated pads." Tate showed that the Dasyuridae are more variable in this respect than other marsupial families bot noted that most dasyurid genera possess striatae.

All Antechinus possess striatect pads, However, in both A, swoinsonas and A, minimas there appears to be a tendency towards reduction in the number of pads. This is in contrast to more typically forest-dwetling species of the A. flavipes group, in which the pads are strongly developed and fusion is exceptional.

In both A, swoinsonezi and A. minimus there is a pronounced elongation of the claws, particularly those of the manus, which in A. swainsonii may exceed 5 rmm. As Finlayson (loc, cit,) noted, the claws of both species are broader and less eurved (see Figure 3) than in A. flavipes, Neomhascogole, of similas dentitition to A. swainsonê, also has similar claws (vide Tate \& Archbold, 1987).

Table 7
Cmparison of body measurements of males and females of A_{T} minimus.

	Males (18)			Females (17)			
Head-hody length	103-140	(118.7)		98	117	(106.3)	
Tail length	$65-100$	(81,2)	69\%		85	(74.6)	70\%
Ear length	$13-17$	(14.7)	12\%	13	15	(13.9)	13\%
Pes length	$16-22$	(18.7)	16%	17	19	(18.0)	17.8\%

Table 8
Comparison of head-body length of Tasmanian and Australian mainland A. minimus.

		Range	Mean \pm S.E.	Standard Deviation
Tasmania	$\begin{aligned} & 6 \mathrm{do} \\ & 5 \mathrm{giq} \end{aligned}$	$\begin{aligned} & 103-122 \\ & 101-117 \end{aligned}$	$\begin{aligned} & 113.2 \\ & 106.6 \end{aligned}$	
Matatsuyer Island	50% 69%	$\begin{array}{r} 1.08-120 \\ 94-114 \end{array}$	$\begin{aligned} & 115.8 \\ & 104.8 \end{aligned}$	
Combined Series (Tasmania und islands)	$111{ }^{11} 9$	$103-122$ $94-117$	113.5 ± 1.70 105.6 ± 2.13	$\begin{aligned} & 5.65 \\ & 7.05 \end{aligned}$
Australian mainland	$\begin{aligned} & 60^{\circ} \mathrm{O} \\ & 10^{2} \end{aligned}$	$1.8-140$	$\underset{(11.6 .0)}{128.3}=3.14$	7.70

Table 9
Comparison of pes length of Tasmantay and Australian mainland A. mimimus.

	Range	Mean - S.E.	Standard Deviation
Combined series 1280	16-22	18.7 ± 0.40	1.37
(Tasmania and 169% islands)	17-19	18.1 ± 0.30	1.21
Austratian 6 or 3 mainland 19^{4}	18-20	$(18.9 \pm 0,07$	0.60

Table 10
Comparison of males with females in the Tasmania-Mantsuyker series of A. minumus.

Measurements in millimetres.

		Range	Mean \pm S.E.	Standard Deviation
Head-body	11.80	103-122	113.5 ± 1.70	5.65
	1189	$94-117$	105.6 ± 2.13	7.05
Pes length	$120^{\circ} 0^{\circ}$	16-22	18.7 ± 0.4	1.37
	1697	17-19	18.1 ± 0.3	1.21

Table 11
Fusion of first interdigital pad with inner metacarpal (-taysal) pad on manus and pes in A. swainsoniz. and A. minimas.

Fusion	Manus		Pes		
	A. minimus	A. swasinsonit.	A. minimius	A. swa	insornia
	$\begin{aligned} & \text { No. of Percent. } \\ & \text { Specs. } \end{aligned}$	$\begin{aligned} & \text { No. of } 1 \text { Percent. } \\ & \text { Spec. } \end{aligned}$	No af \mid Percent. Spec.	No. of Spen.	Percent.
On both feet On one foot	29100	73 97 2 3	i 17 4 14	32 10	44 14
On neither foot			21 69	31	42

(c) Pelage

The texture of the pelage is coarser than in A. swainsonii. A distinctive feature of A. minimus is a strong antero-posterior differentiation in dorsal coloar. The head and shoulders are dark grey, srading into rich yellowish brown on the rump and flanks. The whole is ticked with glints of bronze due to banding of the main pile as in A. swainsonit, but in A. minimus this is more strongly developed and imparts a grizzled appearance. The dorsam is overlain with glistening black guard hairs. The warm, yellowish brown on the flanks is, however, not diluted with black.

The ventrum is uniform greyish yellow or buff. According to the specimens that we have examined, this ventral infusion of yellow invariably distinguishes A. minomus from A. sucainsonti.

The ear, manus and pes are drab krown, ticked with du!] buff. The tail is short-haired, dark brown dorsally and grizzled - due to black and
buff elements - and lighter beneath,

XI. Shull and Denmtion of A. minimus

Table 6 provides cranial data of the series from Maatsuyker, Tasmania and the mainland. The Maatsuyker series is included separately, as it represents an isolated population at the southern limit of the species range (see Figure 7). These skulls are relatively uniform in size compared with the Tasmanian series. However, the latter are from a variety of habitats, from near sea level to over 2000 feet. There is close agreement in the corresponding mean values of each measurement and proportion. On this evidence, together with the similarity found with head-body data, the Maatsuyker form is part of the Tasmanian population of A. minimus.

The mean values of the measurements of the mainland series suggest that this form has a larger skull, with a proportionately narrower postorbi-

Vict. Nat-Nol. 80

Table 12
Comparison of cranial characters of Tasmanian and Australian mainland A. minimus (males).

		No. of Specimens	Mean	Standard deviation	1
Basalar	Mainland	8	28.23	1.058	
Length (B.L.)	Tasmania	11	26.29	1.597	<0.01
Zygomatic	Mainland	3	17.28	0.629	
Breadth	Tasmania	11	15.71	0.789	<0.001
Palatalar	Mainland	9	15.35	0.145	
Length	Tasmania	11	14.45	C. 233	<0.001
Breadth	Mainland	4	9.69	0.254	
at M ${ }^{3}$	Tasmania	112	9.08	0.100	<0.001
Postorbital					
Construction/	Mainland	$*$	26.2	1.046	
B.L., as	Tasmania	11	28.5	0.390	<0.001

tal constriction, than its Tasmanian counterpart. Table 12 sets out the results of a comparison of 9 mainland and 12 Tasmanian male specimens. Differences between the two series are very marked and are of high statistical significance, taking into account the small
samples. The biological significance of these results is not easily defined; nevertheless, within the limits of the available material the occurrence of a larger form on the mainland has been demonstrated.

Finlayson (loc. cit., p. 149), when commenting on the status

(Photo: N. A. Wakefield)
Figure 8: A live male Antechinus minimus maritimus from Bridgewater Lakes, Victoria (F.W.D., No. 426).
of the mainland population of A. minimus (as Phascogale. swainsoni maritima) in relation to A. swainsonii swainsonii and A. flavipes, concluded that A. minimus shows minor cranial changes towards A. flavipes. A more logical interpretation, now that specific and geographical relationships are better understood, is that less extreme modification has occurred in A. minimus than in A. swainsonii. (Compare Figures 4 and 6).

In A. minimus the rostrum is only moderately elongated. The anterior palatine foramina are conspicuously shorter, reaching back to about level with the middle of P^{1}. The length of this opening provides an absolute key feature for distinguishing these two closely related species; in the series measured by us, the range and mean for A. swainsonii is $4.60-6 \cdot 65(5 \cdot 41)$ mm and for A. minimus is 3.30 $-4.40(3.76) \mathrm{mm}$. In A. minimus the frontal-nasal region of the skull is usually convex as in A. flavipes; although occasionally this area is flat, thus approaching the condition of \boldsymbol{A}. suainsonii. The postorbital regicn is parallel-sided, as in A. suainsonii.

The teeth of A. minimus are of the same pattern as in A. swainsonii but as the rostrum is less elongated there is normally no interruption of the upper premolar row by interspaces. The only marked difference is a small distinct metacone* on the M^{4} of A. minimus; this is absent in A. suainsonii. The milk premolars are as in A. suainsonii (see Section VI).

[^3]XII. Breeding Condition in A. minimus

Females

In the total series of 25 fe males, only 3 showed signs of recent breeding activity. Although unoccupied, in each case the pouch area was fully developed and the nipples enlarged. These observations are similar to those recorded for A. swainsonii, and it is probable that the timing of breeding and subsequent events is the same in both species.

In all females of A. minimus minimus examined (Maatsuyker, 6; Tasmania, 3), the nipple number was six. In our two females of A. minimus maritimus, the count was eight. This difference is a parallel to that between A. swainsonii swainsonii and A. swainsonii mimetes. Males

It appears that the details recorded for A. swainsonii (see Section VII) apply also to A. minimus.

ACKNOWLEDGEMENTS

We wish to acknowledge the assis. tance of the Directors and staff members of the museums and other institutions, in Australia and overseas, in the matter of loan material, information and other facilities in connexion with the research and the preparation of this paper.

The Commonwealth Bureau of Census and Statistics. Melbourne, gave advice in regard to the analysis of sets of measurements.

In connexion with the publication of the paper, a major part of the cost of printing and of illustrations has been defrayed by a grant from the M. A. Ingram Trust.

XV. References

Cackrum, E. L., 195k, Labowatory Morual of Morumalogy, Burgess. Minneapolis.
Fintayson, H. H., 1958, A case of duplex convergent resemblance in Anstralian mammals, with as review of some aspects of the morpholagy of Phascogale (Anteehiajus) sweinsonh Waterhouse and Phasoognle (Anteckinus) favir pes Waterhouse. Proc. Roy. Soc. S. Aरa6 81: 141-51.
Fisher, R. A, and Yates, $F_{q} 1957$, Statestional tables far biolagieal, agricsitaral and medival researeh. 5 th Ed. Oliver \& Buyd, London.
Fleay, David, 1982. Swainson'z phascogale (the "bush mouse"), Viat. Nat 49: 132-4.
Fleay, David, 1949. The Yellowfooted Marsupial Mouse Viet, Nat. 65: 273.7.
Geoffroy, E., 1804. Memoits sur les espêces do genre Dasyure. Anus. Mus, Nat. Hist, Nest. $8 \pm 262-3$,
Gray, J, E., 2S41, Contributions towands the geographic distribation of the mammals of Australia with notes of sonte recently discovered species. In Grey, G., Journals of two expoditions . . in . . . Asstratia churing the years 1837 , 38 . and sy. Appendix " C " vol 2: 897 . 414.

Guiler, E. R., 1960. Marsupiats of Tasmania. Govt Frinter, Hobart,
Higgine, E. T, and Petterd, W. F., 1893. Descriptions of hitherto undescribed Antecting and Muridae inhabithg Tasmania. Proe. Roy. Soc. Tas: 2882, pp, 171-4.
Higgins, E. T., and Petterd, W. T., 1884 New species of Tasmanian Antachini and Mus. Froec Roy. Soc. Tus. 188s, pp. 184-6.
Forner, B, Ejizabeth, and Taylor, J. Mary, 1959. Results of the Archbold Expeditions No. \$0. Obscrva. tions on the krology of the Yellowfooted Marsupial Mouse Antachinows fravipes flavipes. Amer, Mus. Nov. No. 1972.
Iredale, Tomin and Troughton, E. Leci., 1034. A Gheck-list of the mammals recorded from Australit. Mewt Austr, Mus. VI: 2-122.

Jones, Fi, W60d, 192d, Mommale of South Austratia, Part 1, Gort, Printer, Adelaide.
Karmal, P. H., 1959. Applied statistices for leonomists. Pitman, Melbourne,
Marlow, B. Ji, 1961, Reproductive behaviour of the marsuplal nouse Antschinue fazines flawives Waterhouse (Marsupislia) and the development of the pouch young. Aust. J. Z00 $9(2)$: 20.-18.
Peron, Francats, 1807. Voyage dic déconvertes anax Tarreg Australes, swr les corvettes la Gēagraposo, fo Naburoliste, ot la poeleste le Casularina, $1800-4$, vol 1, Paris.
Tate, G. H. H.s and Archiold, R., 1837. Results of the Archbold Expeditions 16. Some marsupials of New Guines and Celebes. Bull. Amer. Mus. Nat. Hist. ps(4): 331-476.
Tate, G H. H, 1947. Results of the Archbold Expeditions No, $\$ 6$, On the anatomy and slassiffeacion of the Dasyuridae (Marsupialis) Buh. Ames Mos. Nat Hest. $88(3)$: 101-65.
Tate, G. H. H., 1468 . Results of the Archbold Expeditions No, BU. Studies in the Perame)tase (Mai:supialia). Budt. Amer. Mirs, Nat, Hist $82(6): 817-46$.
Thomas, Oldfield, 1888, Catalogue of the Marsuprulia and Manotrembefa in the collection of the Britiok Muselon. Taylor \& Francis, Londorn
Thomas, Oldfieid, 1924. A new Pouctted Mouse (Phascogale) from northern Naw South Wales, Anp. Mag. Nat Hist, (8) riv: 528
Troughtom, E. LeG., 194L, Ferruat Arimals of Austratid, 1st. Ed. Angus \& Robertson, Sydney:
Waterhouse, G. R., 1840, Description of a new maxsupial fammal beJonging to the genns Phasongale: Mag. Nat. Hist. (z) iv: 299.
Waterhouse, G. F. 18SG, A Natural History of the Mandmalia, Vol, 1, Containing the Order Marskyiata, or pouched aniznals: Baillière, London.
Wood, J. G.f gud Willams, R. St, 1960. In The Australime EnsirmiWent. Bra Ed., C.S.L.R.O. \& Melb. Univ. Press, Melbourne.

[^0]: -Deportment of zoolsay und Fompurallese Physiology, Monash University, Claytor, ఛicturla.
 t Fishuriez zan Wildult Department, Melbrume. Victoria

[^1]: SThe presence of super-numerary minute, striated pads has been noted in A. Haripes and related forms.

[^2]: mazpelen.

[^3]: "Thi" occurs also in A. godmani.

